

GENERAL DESCRIPTION

The EST MC34063 is a monolithic control circuit containing the primary functions required for Dc-to-Dc converters. This device consists of an internal temperature compensated reference, comparator, controlled

duty cycle oscillator with an active current limit circuit, driver and high current output switch. This device was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-inverting applications with a minimum number of external components.

FEATURES

- Operation from 3.0V to 40V Input
- Low Standby Current
- Output Switch Current to 1.5A
- Output Voltage Adjustable
- Frequency of Operation from 100Hz to 100kHz DIP-8
- Precision 2% Reference
- Current Limiting

PIN ARRANGEMENT

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC34063	TA=0°C~+70°C	DIP-8
MC34063S	TA=0°C~+70°C	SOP-8

BLOCK DIAGRAM

This device contains 51 active transistors

ABSOLUTE MAXIMUM RATING

Characteristic	SYMBOL	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Voltage Range	Vir	-0.3 to +40	Vdc
Switch Collector Voltage	VC(switch)	40	Vdc
Switch Emitter Voltage (VPin 1=40V)	VE(switch)	40	Vdc
Switch Collector to Emitter Voltage	VCE(switch)	40	Vdc
Driver Collector Voltage	VC(driver)	40	Vdc
Driver Collector Current (Note 1)	IC(driver)	100	mA
Switch Current	Isw	1.5	А
Power Dissipation and Thermal Characteristics			
Plastic Package			
Ta=25℃	Po	1.25	W
Thermal Resistance	Reja	100	°C/W
SOIC Package			
Ta=25℃	PD	0.625	W
Thermal Resistance	Reja	100	°C /W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature Range	ТА	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

NOTES: 1. Maximum package power dissipation limits must be observed.

2. ESD data available upon request.

ELECTRICAL CHARACTETRISTICS

(Vcc=5.0V, TA=Tlow to Thigh [Note 3], unless otherwise specified.)

CHARACTERISTICS	SYMBOL	MIN	Тур	MAX	Unit	
OSCILLATOR						
Frequency(VPin 5=0V, CT=1.0nF, Ta=25℃)	fosc	24	33	42	kHz	
Oscillator Amplitude (Vcc=5.0V , Ta=25 $^{\circ}$ C)	V(osc)		0.4		V	
Charge Current (Vcc=5.0V to 40V, Ta=25℃)	Ichg	22	35	42	μA	
Discharge Current (Vcc=5.0V to 40V, Ta=25℃)	Idischg	140	220	260	μA	
Discharge to Charge Current Ratio (Pin 7 to Vcc, Ta=25 $^\circ$ C)	ldischg/ Ichg	5.2	6.5	7.5	-	
Current Limit Sense Voltage (Ichg==Idischg, TA=25°C)	Vipk(sence)	250	300	350	mV	
OUTPUT SWITCH (NOTE 4)						
Saturation Voltage, Darlington Connection (Note 5)			1.0	1 0	V	
(Isw=1.0A, Pins 1, 8 connected)		-	1.0	1.5	v	
Saturation Voltage, Darlington Connection			0.45	0.7	V	
(Isw=1.0A, RPin 8=82 Ω to Vcc, Forced β 20)	VCE(sat)	-	0.40	0.7	V	

DC Current Gain (ISW=1.0A, Vce=5.0V, Ta=25°C)	hfe	50	95	-	-
Collector Off-State Current(VcE=40V)	IC(off)	-	0.01	100	μA

ELECTRICAL CHARACTETRISTICS

(Vcc=5.0)/ Tx=Tlow to Thigh [Note 3] unless otherwise specified.)

CHARACTERISTICS	SYMBOL	MIN	Тур	MAX	Unit		
COMPARATOR							
Threshold Voltage							
(Ta=25℃)	Vth	1.225	1 25	1.275	V		
(T _A =Tlow to Thigh)		1.225	1.25 -	1.275			
Threshold Voltage Line Regulation	Pogua		1 4	5.0	m\/		
(Vcc=3.0V to 40V)	Regline	-	1.4	5.0	IIIV		
Input Bias Current (Vin=0V)	Ів	-	-20	-400	nA		
TOTAL DEVICE							
Supply Current (Vcc=5.0V to 40V, CT=1.0nF, Pin 7=Vcc,			2.75	4.0	m۸		
VPin 5>Vth, Pin 2=Gnd, remaining pins open)		-	2.10	4.0	ША		

NOTES:

- 3. Tlow=0 $^\circ \!\! C$ for MC34063A Thigh=+70 $^\circ \!\! C$ for MC34063A
- 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
- 5. If the output switch is driven into hard saturation (non-Darlington) at low switch currents (\leq 300mA) and high driver currents (\geq 30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30kHz, and is magnified at high temperature. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is

recommended:

Forced β of output switch: $\frac{I \text{ output}}{Ic \text{ driver - } 7.0 \text{ mA}^*} \ge 10$

*The 100 Ω resister in the emitter of the driver device requires about 7.0mA before the output switch conducts.

Fig 1.Output Switch On-Off Time versusOscillator

Timing Capacitor

Fig 3.Emitter Follower Configuration Output

Saturation Voltage versus Emitter Current

Fig 2. Timing Capacitor Waveform

Fig 5.Current Limit Sense Voltage versus Temperature

TA, AMBIENT TEMPERATURE (°C)

25

50

75

100

NOTE: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient

temperature as possible.

Ð

Fig 6.Standby Supply Current versus Supply Voltage

VIPK(sense), CURRENTLIMIT SENSE VOLTAGE (V)

400

380

360

340

320

300

280

260

240

220 200

-55

V_{CC} = 5.0 V

Ichg = Idischg

-25

Fig 7. Step-Up Converter

Fig 9. Step-Down Converter

10a. External NPN Switch

10b. External PNP Saturated Switch

Fig 11. Voltage Inverting Converter

NOTE: 5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs to come out of saturation. This condition willshorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does notoccur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended

Calculation	Step-Up	Step-Down	Voltage-inverting
t_{on}/t_{off}	$\frac{V_{out} + V_F - V_{in(\min)}}{V_{in(\min)} - V_{sat}}$	$\frac{V_{out} + V_F}{V_{in(\min)} - V_{sat} - V_{out}}$	$\frac{\mid V_{out} \mid +V_F}{V_{in} - V_{sat}}$
t _{on} +t _{off}	$\frac{1}{f}$	$\frac{1}{f}$	$\frac{1}{f}$
t _{off}	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$
t _{on}	$(t_{on}+t_{off})-t_{off}$	$(t_{on}+t_{off})-t_{off}$	$(t_{on}+t_{off})-t_{off}$
CT	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}
$I_{pk(\text{switch})}$	$2I_{out(max)}(\frac{t_{on}}{t_{off}}+1)$	2I _{out(max)}	$2I_{out(max)}(\frac{t_{on}}{t_{off}}+1)$
R _{sc}	0.3/Ipk(switch)	0.3/Ipk(switch)	0.3/Ipk(switch)
L _(min)	$(\frac{(V_{in(\min)} - V_{sat})}{I_{pk(switch)}})t_{on(\max)}$	$(\frac{(V_{in(\min)} - V_{sat} - V_{out})}{I_{pk(switch)}})$ ton(max)	$(\frac{(V_{in(\min)} - V_{sat})}{I_{pk(switch)}})t_{on(\max)}$
Co	$9 rac{I_{out}t_{on}}{V_{ripple(pp)}}$	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$	$9 \frac{I_{out} t_{on}}{V_{ripple(pp)}}$

Fig 13. Design Formula Tabl

Vsat = Saturation voltage of the output switch.

VF = Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

Vin-Nominal input voltage.

Vout - Desired output voltage,

lout – Desired output current.

$$|Vout|=1.25(1+\frac{R2}{R1})$$

fmin – Minimum desired output switching frequency at the selected values of Vin and Io.

Vripple(p-p) –Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulatio

EXTERNAL DIMENSIONS

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
Κ	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
Μ		10°		10°	
Ν	0.76	1.01	0.030	0.040	

N

к

Ď

G

EATING

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.201
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	1.27 BSC		BSC
J	0.18	0.25	0.007	0.009
K	0.10	0.25	0.004	0.009
Μ	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOP-8