

# **Data Sheet**

| Type Description : | High Voltage Green-Mode<br>PWM Flyback (SSR) Controller |
|--------------------|---------------------------------------------------------|
| Product Name :     | EST.3000xS                                              |
| Reversion :        | V1.0                                                    |
| Reversion Date :   | May, 2019                                               |
| Page :             | 16 Pages                                                |

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.



# **General Description**

The EST.3000xS is a series of high-performance current mode PWM controllers with integrated high-voltage device provides fast start-up function without external start-up resistors.

The EST.3000xS also integrates the intelligent zero-watt mode (ZWMTM)technology, which technology can provides an excellent green power solution, especially under light-load and no-load conditions.

It also features brown-in and brown-out detection.

The EST.3000xS offers complete protection functions such as internal Over-Temperature Protection (OTP), Over-LoadProtection (OLP) and VDD Over-Voltage Protection (OVP).

It also features Secondary Rectifier Short-circuit

Protection (SCP1) Cable end short-circuit Protection(SCP2) and Current Sensing pin (CS) open circuit

protection. Due to these protections, design of power supply unit becomes simple and reliable.

The EST.3000xS provides several versions, shown in the version table, for various applications.

X is for function options

## Features

- Integrated 700V Start-Up Device
- Brown-In and Brown-Out
- X-cap discharge
- Low No-Load Input Power (<30mW)</li>
- Accurate Over Load Protection
- Driver Capability : 400mA/-400mA
- RTL pin for Arbitrary External Protection
- Zero Watt Mode (ZWMTM) for 10mW Solution
- Jittering Frequency
- Soft Driving for Reducing EMI Noise
- VDD Over Voltage Protection
- Internal Over Temperature Protection
- Secondary Rectifier Short Protection
- Cable-end Short Protection
- CS Pin Open Protection
- RoHS Compliant and Halogen Free



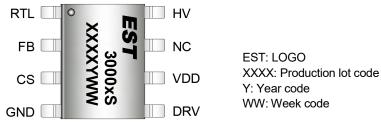
SOP-8L

# **Application**

- Switching AC/DC adapter and battery charger
- ATX standby power
- Open frame switching power and CD(R)
- Set-top-boxes(STB) 384Xreplacement

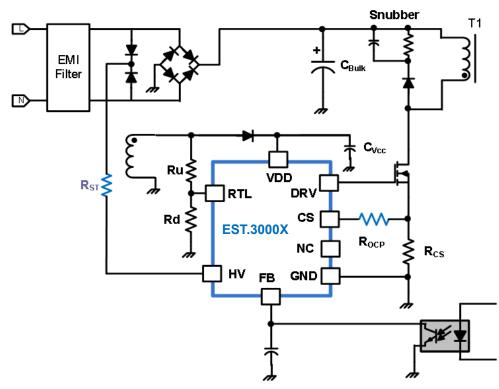
# **Function and Protection Options**

| Dort        |         | Freq. |        |        |        | Protectio | า      |        |        |        |
|-------------|---------|-------|--------|--------|--------|-----------|--------|--------|--------|--------|
| Part<br>No. | Package | KHZ   | VCC    | OLP    | AUX.   | AUX.      | CS     | SDSP   | Line   | BNO    |
| <b>NO</b> . |         |       | OVP    | (65mS) | OVP    | UVP       | Open   | 0001   | OVP    | Bitto  |
| EST.3000AS  | SOP-8L  | 65KHz | Hiccup | Hiccup | Hiccup | Hiccup    | Hiccup | Hiccup | Hiccup | Hiccup |
| EST.3000RS  | SOP-8L  | 65KHz | Latch  | Hiccup | Hiccup | Hiccup    | Hiccup | Hiccup | Hiccup | Hiccup |
| EST.3000LS  | SOP-8L  | 65KHz | Latch  | Latch  | Latch  | Latch     | Hiccup | Hiccup | Hiccup | Hiccup |


Note: EST lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. EST lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. EST defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight)

#### **Ordering Information**

| Part Number      | Package | Packaging   | Note  |
|------------------|---------|-------------|-------|
| EST.3000AS & ASR | SOP-8L  | Tape & Reel | Green |
| EST.3000RS & RSR | SOP-8L  | Tape & Reel | Green |
| EST.3000LS & LSR | SOP-8L  | Tape & Reel | Green |




## **Pin Assignments and Package Type**



| SOP-8L | NAME<br>Description | Description                                                                                                                        |
|--------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1      | RTL                 | External Protection Input for Output OVP or Line OVP                                                                               |
| 2      | FB                  | Feedback Voltage Input. Connect an opto-coupler to close the control loop and achieve output voltage regulation.                   |
| 3      | CS                  | Current Sense Input. The current sense resistor between this pin and GND is used for current limit setting.                        |
| 4      | GND                 | Ground of the Controller.                                                                                                          |
| 5      | DRV                 | Gate Driver Output for the External MOSFET.                                                                                        |
| 6      | VDD                 | Supply Voltage Input. The controller will be enabled when VDD exceeds UVLO_ON and disabled when VDD decreases lower than UVLO_OFF. |
| 7      | NC                  |                                                                                                                                    |
| 8      | HV                  | High Voltage Input for Start-Up. AC Brown in/out and Line OVP detection.This pin can withstand high voltage up to 700V.            |

# **Application Circuit**





# **Absolute Maximum Ratings**

| Developmente v Complete                 |                  | Cumphiel             | Limit | Values               | L Insite      | Dements |
|-----------------------------------------|------------------|----------------------|-------|----------------------|---------------|---------|
| Parameter Symbol                        |                  | Symbol               | Min.  | Max                  | Unit          | Remark  |
| Supply Voltage VDD                      |                  | V <sub>DD</sub>      | -0.3  | 30                   | V             |         |
|                                         |                  | V <sub>FB</sub>      |       |                      |               |         |
| FB,CS,RTL                               |                  | Vcs                  | -0.3  | 7                    | V             |         |
|                                         |                  | V <sub>RTL</sub>     |       |                      |               |         |
| HV to GND                               |                  | V <sub>HV</sub>      | -0.3  | 700                  |               |         |
| Gate Driver Voltage                     |                  | V <sub>DRV</sub>     | -0.3  | V <sub>DD</sub> +0.3 | V             |         |
| Gate Output Current                     |                  | I <sub>DRV</sub>     |       | 500                  | mA            |         |
| Operation Junction Temperature          |                  | Tj                   | -40   | 150                  | °C            |         |
| Operation Ambient Temperature           |                  | T <sub>A</sub>       | -25   | 85                   | °C            |         |
| Storage Temperature                     |                  | T <sub>stg</sub>     | -55   | 150                  | °C            |         |
| Power Dissipation @TA=85°C              |                  | PD                   | -     | 220                  | mW            |         |
| Junction-to-Ambient Thermal Resistance* | <b>Ta = 25</b> ℃ | θ <sub>JA</sub>      |       | 180                  | °C <b>/W</b>  | SOP-8   |
| Junction-to-Case Thermal Resistance**   | Ta = 25℃         | θ <sub>JC</sub>      |       | 39                   | °C <i>I</i> W | 50P-0   |
| Lead temperature (Soldering, 10 sec)    |                  |                      | -     | 260                  | °C            |         |
| ESD Voltage Brotestion                  | HBM              | V <sub>ESD-HBM</sub> | -     | 3.0                  | KV            |         |
| ESD Voltage Protection                  | MM               | V <sub>ESD-MM</sub>  | -     | 300                  | V             |         |

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **Recommended Operating Conditions**

| Parameter                  | Symbol          | Limit | Values | Unit | Remarks |
|----------------------------|-----------------|-------|--------|------|---------|
| Symbol                     | Symbol          | Min.  | Max    | Unit | Remarks |
| Supply Voltage VDD         | V <sub>DD</sub> | 10    | 26     | V    |         |
| Supply Voltage HV          | $V_{HV}$        |       | 700    | V    |         |
| Startup Resistor Value     | Rstar           | 265   | 300    | KΩ   |         |
| Junction temperature range | Tj              | -40   | 150    | °C   |         |
| Ambient temperature range  | Topr            | -40   | 85     | °C   |         |
| Capacitance of FB pin      | C <sub>FB</sub> |       | 2.2    | nF   |         |

# DC Electrical Characteristics (VCC =15V, Ta=25°C)

#### HV Section (VHV Pin):

| Parameter                      | Symbol                | Min. | Тур. | Max. | Unit | Conditions                    |
|--------------------------------|-----------------------|------|------|------|------|-------------------------------|
| IHV Supply Current for HV pin  | I <sub>HV-ST1</sub>   |      | 20   |      | mA   | VDD < UVLO ON, $V_{HV}$ =200V |
| Off State Leakage Current      | I <sub>HV-LK</sub>    |      | 1    |      | μA   | VDD > UVLO ON, $V_{HV}$ =560V |
| X-cap Discharge De-bounce Time | T <sub>Xcap-dis</sub> |      | 64   |      | mS   | Freq. = 65KHz                 |
| Brown In trigger point         | V <sub>BNI</sub>      | 81   | 85   | 89   | V    | R <sub>ST</sub> = 281KΩ       |
| Brown Out Hysteresis Voltage   | V <sub>BNO</sub>      | 10   | 15   | 20   | V    | R <sub>ST</sub> = 281KΩ       |
| BNO De-bounce time             | T <sub>BNO</sub>      | 16   | 21   | 33   | mS   |                               |
| Line OVP trigger point         | V <sub>LNOVP</sub>    | 300  | 315  | 330  | V    | R <sub>ST</sub> = 281KΩ       |
| Line OVP Hysteresis Voltage    | VLNOVP_HYS            | 10   | 15   | 20   | V    | R <sub>ST</sub> = 281KΩ       |
| Line OVP De-bounce time        | T <sub>LNOVP</sub>    | 130  | 140  | 150  | mS   |                               |
| AC detect time                 | T <sub>ACD</sub>      | 20   | 22.5 | 25   | mS   |                               |



# Supply Voltage (VCC Pin):

| Parameter                                       | Symbol                | Min. | Тур. | Max. | Unit  | Conditions                   |
|-------------------------------------------------|-----------------------|------|------|------|-------|------------------------------|
| Operating Current                               | I <sub>CC-OP</sub>    | 0.4  | 0.6  | 0.8  | mA    | V <sub>FB</sub> =0V          |
| Operating Current<br>(with 1nF load on DRV pin) | I <sub>CC-OP</sub>    | 1.5  | 2    | 2.5  | mA    | V <sub>FB</sub> =2.5V CL=1nF |
|                                                 | I <sub>CC-OLP</sub>   | 0.2  | 0.35 | 0.5  | mA    | Protection Current           |
| UVLO (off)                                      | V <sub>UVLO-OFF</sub> | 7.5  | 8    | 8.5  | V     |                              |
| UVLO (on)                                       | V <sub>UVLO-ON</sub>  | 17   | 18   | 19   | V     |                              |
| VDD OVP Level                                   | V <sub>OVP</sub>      | 26   | 27   | 28   | V     |                              |
| OVP Debounce Time                               | T <sub>OVP</sub>      |      | 4    |      | cycle | Guarantee by Design          |
| VDD Simulation mode(ON)                         | VDD <sub>-HD_ON</sub> | 9.7  | 10.2 | 10.7 | V     |                              |
| VDD Simulation mode(OFF)                        | VDD-HD_OFF            | 10.2 | 10.7 | 11.2 | V     |                              |

## Voltage Feedback(FB Pin):

| Parameter                    | Symbol                 | Min. | Тур. | Max. | Unit | Conditions                  |
|------------------------------|------------------------|------|------|------|------|-----------------------------|
| Short Circuit Current        | I <sub>Zero</sub>      | 0.1  | 0.14 | 0.18 | mA   | V <sub>FB</sub> =0V         |
| Open Loop Voltage            | V <sub>FB-OP</sub>     | 4.8  | 5    | 5.2  | V    | FB pin open                 |
| Burst mode start voltage(on) | V <sub>BUR_ON</sub>    | 0.9  | 1    | 1.1  | V    | RTL Discharge Voltage 2.7 * |
| Burst Mode Hysterics         | V <sub>BUR_HY</sub>    | 0.05 | 0.1  | 0.15 | V    |                             |
| Green Mode Threshold         | V <sub>th_GR</sub>     |      | 1.5  |      | V    |                             |
| Green Mode End Threshold     | V <sub>th_GR_end</sub> |      | 1.1  |      | V    |                             |

## Current Sensing (CS Pin):

| Parameter                         | Symbol                            | Min. | Тур. | Max. | Unit  | Conditions                         |
|-----------------------------------|-----------------------------------|------|------|------|-------|------------------------------------|
| Leading Edge Blanking Time &      | т "т                              | 300  | 400  | 500  | 20    |                                    |
| Propagation Delay to Output       | T <sub>LEB</sub> +T <sub>PD</sub> | 300  | 400  | 500  | ns    |                                    |
| Maximum CS Off Voltage            | V <sub>CSTH</sub>                 | 0.65 | 0.7  | 0.75 | V     |                                    |
| OCP source current                | I <sub>OCP</sub>                  | 18.5 |      | 21.5 | %     | I <sub>OCP</sub> /I <sub>AUX</sub> |
| Over Load Protection              | V <sub>OLP</sub>                  | 0.45 | 0.5  | 0.55 | V     | т                                  |
| Debounce Time of OLP              | T <sub>OLP</sub>                  | 54   | 64   | 74   | mS    | T <sub>ON</sub>                    |
| Over temperature protection       | VOTP                              | 0.45 | 0.5  | 0.55 | V     | т                                  |
| Debounce Time of OTP              | T <sub>OTP</sub>                  | 54   | 64   | 74   | mS    | T <sub>OFF</sub>                   |
| OTP Leading Blanking time         | T <sub>OTP_LEB</sub>              |      | 2    |      | uS    |                                    |
| Short Circuit Protection Voltage  | V <sub>SCP</sub>                  |      | 0.85 |      | V     | Guarantee by Design                |
| Debounce Time of V <sub>SCP</sub> | T <sub>SCP</sub>                  |      | 3    |      | cycle |                                    |

#### Miltiple function (RTL Pin):

| Parameter                         | Symbol                        | Min.  | Тур. | Max. | Unit  | Conditions          |
|-----------------------------------|-------------------------------|-------|------|------|-------|---------------------|
| Output OVP Trigger Point          | $V_{\text{TH }_{\text{OVP}}}$ | 2.9   | 3    | 3.1  | V     | FB>4V               |
| Output OVP Deglitch Time Constant | T_OVP _delay                  |       | 4    |      | Cycle | Guarantee by Design |
| Output UVP Trigger Point          | V <sub>TH_UVP</sub>           | 0.7   | 0.8  | 0.9  | V     | FB>4V               |
| Output UVP Deglitch Time Constant | T_OVP_delay                   |       | 4    |      | Cycle | Guarantee by Design |
| Positive Clamped voltage          | V <sub>POS</sub>              | 6     |      | 7    | V     |                     |
| Negative Clamped voltage          | V <sub>NEG</sub>              | -0.05 |      | 0.05 | V     |                     |
| RTL Leading Blanking time         | T <sub>RTL_LEB</sub>          |       | 2    |      | uS    | Guarantee by Design |

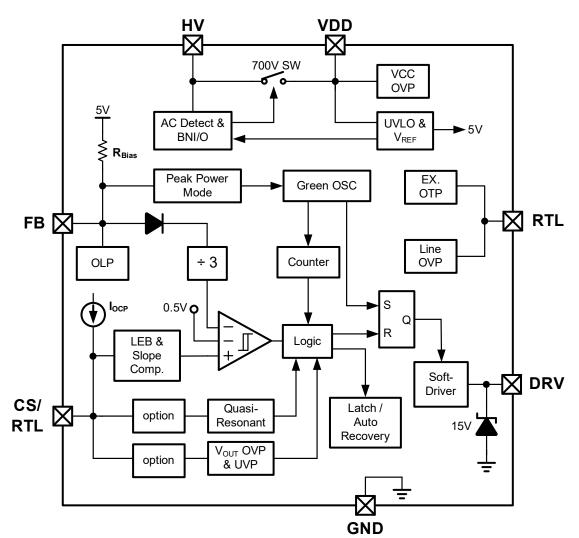
#### Driver(DRV Pin) :

| Parameter                  | Symbol               | Min. | Тур. | Max. | Unit | Conditions         |
|----------------------------|----------------------|------|------|------|------|--------------------|
| Output Low Level           | V <sub>OL</sub>      |      |      | 1    | V    | VDD = 16V, IO=20mA |
| Output High Level          | V <sub>он</sub>      | 8    |      |      | V    | VDD = 16V, IO=20mA |
| Output Clamp Voltage Level | V <sub>G_Clamp</sub> | 11   | 12.5 | 14   | V    | VDD = 25V          |
| Rising Time                | T <sub>R</sub>       | 200  | 300  | 400  | nS   | VDD = 16V, CL= 1nF |
| Falling Time               | T <sub>F</sub>       | 10   | 30   | 50   | nS   | VDD = 16V, CL= 1nF |

# **EST.3000XS** High Voltage Green-Mode PWM Flyback (SSR) Controller with Brownout



#### **Timer Section:**


| Parameter                      | Symbol                  | Min. | Тур. | Max. | Unit | Conditions    |
|--------------------------------|-------------------------|------|------|------|------|---------------|
| Burst Mode Frequency           | F <sub>Burst</sub>      | 20   | 22.5 | 25   | KHz  |               |
| PWM Mode Frequency             | <b>F</b> <sub>PWM</sub> | 61   | 65   | 69   | KHz  |               |
| Voltage stability of Frequency | F <sub>PSRR</sub>       | -1   |      | +1   | %    | VDD = 11V~25V |
| Frequency Shuffling Range      | F <sub>jitter</sub>     | +/-4 | +/-6 | +/-8 | %    |               |
| Maximum duty cycle             | D <sub>MAX</sub>        | 75   | 80   | 85   | %    |               |
| Internal Soft Startup Time     | T <sub>SS</sub>         | 10   |      | 15   | mS   |               |

#### On chip OTP:

| Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions |
|-----------|--------|------|------|------|------|------------|
| OTP Level |        |      | 150  |      | °C   |            |
| OTP exit  |        |      | 120  |      | °C   |            |

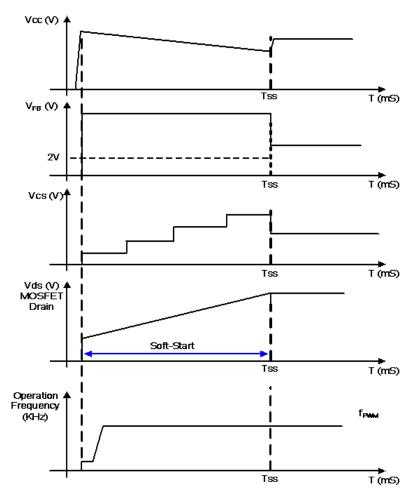
# **Block Diagram**

EST.3000xS








# **Application Note**

#### **Operation Overview**

The EST.3000xS meets the green power requirement and very suitable for the use in those networking adaptors ,TV open frame and various consumer power, which can provide more power efficiency and lower power loss. It also supports various kind of protection for every abnormal environments.

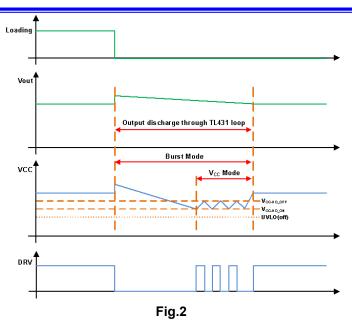
#### SS, Soft-start Sequence

EST.3000xS also built-up 12.5ms (typical) soft-start to soften the electrical stress occurring in the power supply during startup, refer to Fig.1. As soon as VDD reaches UVLO\_on, the Cs peak voltage is gradually increased from 0.2V to the maximum level, see fig.1.





#### **VDD Stimulation Mode**


EST.3000xS provides stimulation mode to avoid abnormal re-start-up under heavy loading to no-load, caused by non-balance of discharge of VDD cap and output cap, which is different with burst mode. The waveform is shown in fig.2.

Condition :  $V_{FB}$  <  $V_{BUR_{ON}}$  &  $_{VDD}$  <9.5V trigger, Hysterics Voltage 1V

Action : IC fix output  $F_{\text{Burst}}$  , and  $V_{\text{CS}}$  keeps as 0.15V

Notice : Design  $V_{AUX}$  higher than 11V

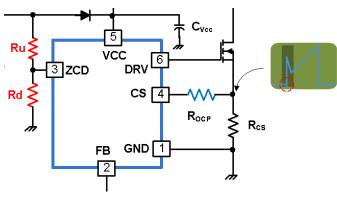
**EST.3000XS** High Voltage Green-Mode PWM Flyback (SSR) Controller with Brownout

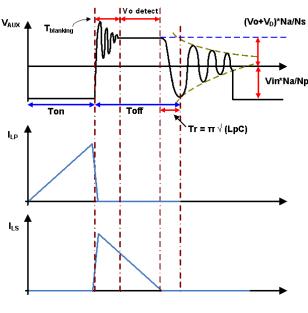


# **OLP (Over Load Protection)**

EST.3000xS has new OLP built-in at CS pin, and its merit of close loop methodology makes audio noise free. The adjustment of OCP is through RTL and CS, please refer to Fig.3. It can detect the status of AC line and output voltage through the resistance divider (Ru,Rd) by the reflection waveform of Aux-winding. At negative cycle, V<sub>RTL</sub> will keep "0" and output I<sub>OCP</sub> at CS pin to change the level of slope compensation, please see Fig.3. Therefore, it can modify the Ru and R<sub>OCP</sub> to get target of OCP @full range.

Step 1. Sett  $R_U$ =200K $\Omega$ , Rd=39K $\Omega$  (initial setting) &  $R_{OCP}$  = 1K $\Omega$  and modifies  $R_{CS}$  to target of OCP@90Vac Step 2. Increase  $R_{OCP}$  impedance to reduce OCP and check the OCP of AC full range. Modifies  $R_{OCP}$  to make OCP unanimous for AC full range.





Fig.3

# **RTL** : Demagnetization Detection from **RTL** pin (**QR** Mode Detection)

After MOSFET turns off, the current of secondary side diodes goes down to zero , and then the transformer core will be demagnetized completely, see fig.4. At the same time, a quasi resonant signal will be detected from auxiliary winding by RTL pin through the external resister divider.







#### Fig.4

#### Programmable V<sub>O\_OVP</sub> & burst mode level

This RTL pin is also used to program the burst level at light load and high output voltage at system open loop . A resistive divider between Aux winding and GND is used to set a voltage at this pin to determine the peak current level when power entries the adaptive burst mode. At the same time, it also detects voltage level of output.  $V_{O OVP}$ :

# Modifies $R_d$ to target of $V_{O_OVP}$ Calculate the ratio of $R_d$ to $(R_u+R_d)$

$$\begin{split} R_{u} &= 200 Kohm \ ; \\ \frac{R_{d}}{R_{u} + R_{d}} = \frac{V_{\text{TH\_OVP}}}{(V_{o\_\text{OVP}} + V_{d})} \times \frac{N_{s}}{N_{a}} \end{split}$$

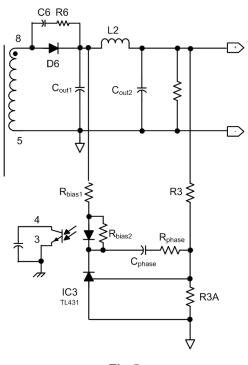
$$\mathbf{R}_{u} + \mathbf{R}_{d}$$
 (Vo\_ovp

#### Adjust Burst :

$$V_{\text{BUR\_ON}} = (V_{\text{o}} + V_{\text{d}}) \times \frac{N_{\text{a}}}{N_{\text{s}}} \times \frac{R_{\text{d}}}{R_{\text{u}} + R_{\text{d}}} - 1.7$$

#### FB, Voltage Feedback Loop

EST.3000xS series adopt current mode control, that is say, the voltage feedback signal is provided from TL431 at secondary side through the photo-coupler to FB pin and compare to the current signal sensing from Cs pin at primary side of MOS current to control the on/off of MOSFET.


In order to enhance light load efficiency, the loss of the feedback resistor in parallel with photo-coupler is reduced. Due to small feedback resistor current, shunt regulator selection and minimum regulation current design have to considered more carefully to make sure it's able to regulate under low cathode current.

To make sure the stability of feedback is very important. Unstable feedback signal will introduce output oscillate or audio noise. You can monitor the ripple & Noise of output to adjust the phase and gain margin of close loop.

(1).  $R_{bias1}$  and  $R_{bias2}$  to prevent the abnormal output voltage at heavy loading. Generally, we suggest  $R_{bias1}$ 100~1K $\Omega$ ,  $R_{bias2}$  1.5~2.5K $\Omega$ ;

- (2).  $R_{phase}/C_{phase}$  is for RC phase compensation and prevent oscillate to adjust the value of  $C_{FB}$
- (3). The ratio of  $R_3$  and  $R_{3A}$  is depent on the output voltage spec (TL431 ,V= 2.5V)







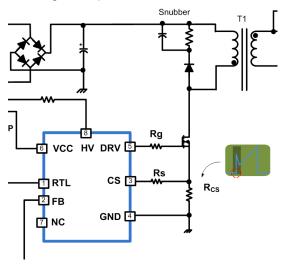
In addition,  $V_{\mbox{\scriptsize FB}}$  is also used to determine the green

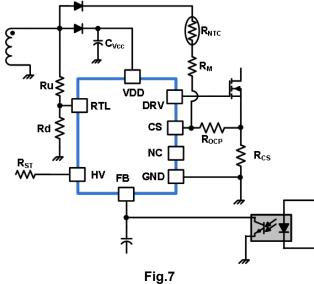
mode level .When  $V_{FB}$  is under  $V_{BUR_ON}$ , it is under no load or light load condition; at light loading, burst mode can effectively reduces the switching loss. When  $V_{FB}$  is larger than  $V_{BUR_ON}$ , it will leave away the standby mode. The normal operation of  $V_{FB}$  is from  $V_{BUR_ON}$  to 2.4V,; meanwhile, short-circuit current is around  $I_{Zero}$ .

#### CS, Current sense Loop

Current mode PWM control mode detects the current command (CS) from the Rsense (the primary MOSFET current sense resistor) and voltage command from photocoupler (FB) to determine whether the system reaches a stable or not. There is a potential risk of sub-harmonic when the duty of flyback methodology is larger than 50% and the operation under continues conduction mode (CCM), therefore, EST.3000xS series of built-in high and low slope compensation to avoid the sub-harmonic risk.

A leading-edge blanking (LEB) time is included in the input of CS pin to prevent the false-trigger from the current spike. Meanwhile, it is strongly recommended to put a suitable R-C filter for higher power application to prevent the CS pin being damaged by the unknow negative spike.





Fig.6

EST.3000X HV-Green-Mode PWM Flvback (SSR)

# **EST.3000XS** High Voltage Green-Mode PWM Flyback (SSR) Controller with Brownout

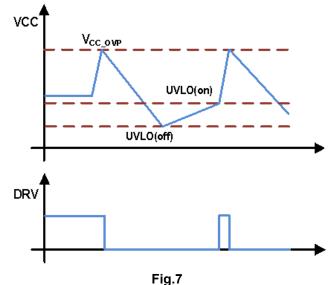
#### **OTP (Over Temperature Protection on CS)**

EST.3000xS is implemented over temperature protection on CS pin which senses voltage to determine NTC status during gate off region. As  $V_{CS}$  is greater than 0.5V and continues for 64ms  $\cdot$  CS\_OTP is triggered, than EST.3000xS is in protection mode till the temperature drops to setting work condition.



#### DRV

The driving capability of EST.3000xS is around 450mA, which can support power rate around 60~70W, and it is limited the maximum duty-cycle below 80% to avoid the transformer saturation.


Typically, the threshold of MOSFET is about 20V, and the maximum clamp voltage of EST.3000xS is 14V to prevent breakdown of MOSFET.

#### **Complete Protection**

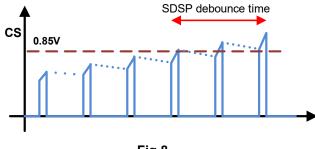
EST.3000xS integrates various kind of protection to make sure operation safety.

# VDD OVP (Over Voltage Protection)

The maximum ratings of the EST.3000xS are around 30V. To prevent the VDD enter breakdown condition, EST.3000xS series are integrated with OVP function on VDD pin. Whenever the VDD voltage is higher than the  $V_{OVP}$  threshold, the output gate drive circuit will be turn-off simultaneously and the power MOSFET is turn-off until the next UVLO(on) cycle.



# **EST.3000XS** High Voltage Green-Mode PWM Flyback (SSR) Controller with Brownout




#### **SCP (Short Circuit Protection)**

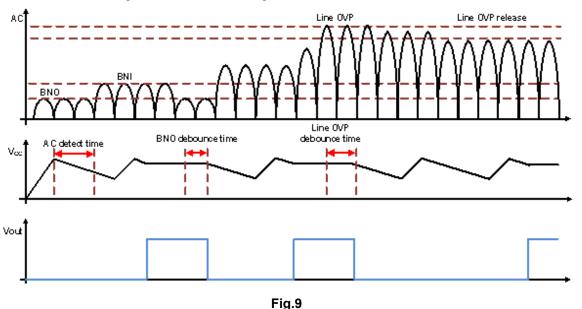
A resistive divider between Aux winding and GND is used to monitor output voltage. When output circuit is short, Therefore, as  $V_{\text{RTL}}$  is lower than 0.8V during date off region, then  $V_{TH\_UVP}$  is triggered, EST.3000xS is to enable UVP function in order to reduce input power

# SDSP, Secondary Diode Short Protection

After short circuit of 2nd side schottky, the inductance current is too low to discharge completely caused by lower output voltage, and then it will continues to increasing to induce abnormal saturation of transformer during LEB timing, therefore, higher peak current induce serious high Vds to damage MOSFET. EST.3000xS detects the inductance current through the resistance, Rcs, of CS pin, and will trigger protection (latch or hiccup) when Vcs higher than 0.85V and sustains 3cycle timing.






## AC, Brown-in/out & Line OVP

EST.3000xS provides real detection of AC line through AC pin connected directly to AC line. When the VDD of EST.3000xS reaches UVLO\_ON , it is into the state of

AC detection , and sustains a delay time  $T_{\text{ADC}}$  .

This AC pin is used to program the AV over and under voltage level through a resistive divider (Ra1/Ra2). If Vac is lower than below  $V_{BNI}$  or higher than  $V_{LNOVP\_HYS}$ ,

It will turn-off the output till next cycle to check the condition is removed or not. Even after it turn-off, this pin is continues to detect line status. If Vac is lower than below  $V_{BNO}$  or higher than  $V_{LNOVP}$  for the timing  $T_{BNO}$  and  $T_{LNOVP}$ , it will be turn-off, and re-start again. Please refers to fig9.





#### Intelligent AC off Detect with X-CAP discharge

The HV pin is also used for AC detection. When AC is off, the AC off state can be detected through HV pin. Then IC will provide a discharge path from HV pin to GND for the X-CAP discharge.

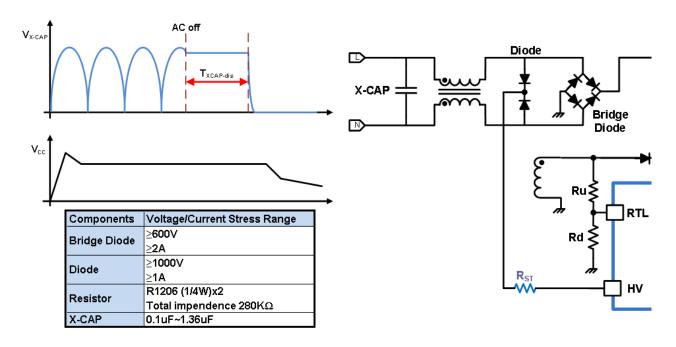
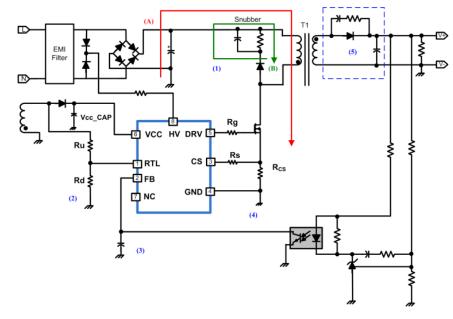




Fig.10

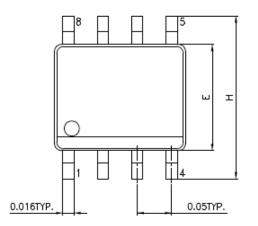
## Layout Guide line

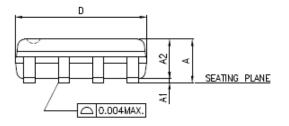
Better layout plan can reduce unknow noise no matter signal or EMI, please refer to the list below :

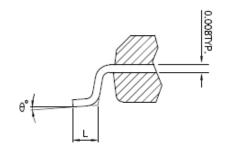
- Big current path : A&B (Area 1) area are high frequency current loop, line to line is as close as possible, and avoid near low voltage control area
- ✓ **Low voltage area** : R devider need to be as near FB\_Pin as possible.
- Secondary Side Schottky : routing as close as possible
- Grounding: (2).(3) and (4) grounding separated with each other, and end connects to (1) ground.
- RTL : Ru & Rd as close as possible to avoid noise coupling to trigger OVP.






#### **Table 1: Complete Protection**


| Issue |                         |                          | Pin | Protection Conditions                                                                        |  |  |
|-------|-------------------------|--------------------------|-----|----------------------------------------------------------------------------------------------|--|--|
| 1st   | V-Sense VCC OVP         |                          | Vcc | Vcc > 28V                                                                                    |  |  |
| 1st   | V-Sense VCC UVLO Off    |                          | Vcc | Vcc < 7.5V                                                                                   |  |  |
| 1st   | V-Sense                 | Brown In Fail            | AC  | V <sub>AC</sub> <0.85                                                                        |  |  |
| 1st   | V-Sense                 | Brown out                | AC  | V <sub>AC</sub> >0.75V                                                                       |  |  |
| 1st   | V-Sense                 | Line OVP                 | AC  | V <sub>AC</sub> >3.0V                                                                        |  |  |
| 1st   | V-Sense                 | T1 Aux gnd open          | ZCD | ZCD UVP trigger                                                                              |  |  |
| 1st   | V-Sense                 | MOS short/Gate to GND    | ZCD | ZCD UVP trigger                                                                              |  |  |
| 1st   | V-Sense                 | CS pin open              | CS  | V <sub>CS</sub> >0.7V after 4 cycles                                                         |  |  |
| 1st   | ZCD ZCD upper R open    |                          | ZCD | ZCD UVP : after soft-start ZCD < 0.85V & FB > 4V                                             |  |  |
| 1st   | ZCD                     | ZCD upper R short        | ZCD | ZCD OVP : ZCD>3V & FB>4V                                                                     |  |  |
| 1st   | ZCD                     | ZCD down side open       | ZCD | ZCD OVP : ZCD>3V & FB>4V                                                                     |  |  |
| 1st   | ZCD                     | ZCD down-side short      | ZCD | ZCD UVP : after soft-start time ZCD < 0.85V & FB > 4V                                        |  |  |
| 2nd   | SDSP                    | 2nd side Schottkey short | CS  | VCS >0.85V after 4 cycles                                                                    |  |  |
| 2nd   | SCP                     | Output short             | ZCD | 1. 12ms blank time during start-up<br>2. after 4 cycles<br>3. ZCD UVP = 0.8V & FB>4V trigger |  |  |
| 2nd   | OVP                     | Output OVP               | ZCD | V <sub>ZCD</sub> compares to 3V through the resistance divider                               |  |  |
| 1nd   | ОСР                     | ОСР                      | CS  | Hi/Low line OCP external adjust , Max current limit CS=0.7V                                  |  |  |
| 2nd   | OLP                     | OLP                      | CS  | CS > 0.5V                                                                                    |  |  |
| 2nd   | Short before power on   |                          | ZCD | 1. 12ms blank time at start-up<br>2. after 4 cycles<br>3. ZCD UVP = 0.8V & FB>4V trigger     |  |  |
| 2nd   | Short after<br>power on |                          | ZCD | 1. after 4 cycles<br>2. ZCD UVP = 0.8V & FB>4V trigger                                       |  |  |
| IC    | Chip OTP                |                          |     | chip OTP at 150 °C                                                                           |  |  |




**Package Information** 

SOP-8 Package (mm)







| Symbols | Dim   | ensions In In | ches  | Dimensions In millimeters |       |       |  |
|---------|-------|---------------|-------|---------------------------|-------|-------|--|
|         | MIN.  | NOR.          | MAX.  | MIN.                      | NOR.  | MAX.  |  |
| A       | 0.050 | 0.061         | 0.072 | 1.270                     | 1.549 | 1.829 |  |
| A1      | 0.000 |               | 0.010 | 0.000                     |       | 0.254 |  |
| A2      |       |               | 0.062 |                           |       | 1.575 |  |
| D       | 0.185 | 0.193         | 0.200 | 4.699                     | 4.902 | 5.080 |  |
| E       | 0.147 | 0.154         | 0.160 | 3.734                     | 3.912 | 4.064 |  |
| Н       | 0.225 | 0.237         | 0.249 | 5.715                     | 6.020 | 6.325 |  |
| L       | 0.013 | 0.033         | 0.053 | 0.330                     | 0.838 | 1.346 |  |
| θ       | 0°    | 4°            | 8°    | 0°                        | 4°    | 8°    |  |



© http://www.esthome.com

© 2019 EST Printed in China - All Rights Reserve