

Data Sheet

Type Description: Green-Mode PWM Controller

(SSR)

Product Name: EST.28xxD

Reversion: V1.0

Reversion Date: May, 2020

Page: 12 Pages

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

General Description

EST.28xxD is a higher integrated PWM flyback controller. It provides several functions to enhance the efficiency to meets the criteria of global standards such as DoE Level VI and EU CoC V5 Tier-2. Meantime, it also provides excellent EMI-improved solution, and also built in complete protection.

EST.28xxD is a green mode controller, which implements low start-up current, green-mode power-saving. It is also built-in the leading-edge blanking (LEB) of the current sensing and feedback loop to screen the spike noise from any input signal. The internal slope compensation can limit the constant output over universal AC input range. The sawtooth over frequency function for EMI improved solution.

Meanwhile, EST.28xxD also provides various protection, such as, OLP (Over Load Protection), VDD OVP (Over Voltage Protection), Output OLP and output OVP to prevent the circuit damage from the abnormal conditions.

EST.28xxD is available in DIP-7.

EST.28xxD works with current sensing synchronous rectifier controllers, such as EST.6001C and EST.6xxAxx to achieve higher conversion efficiency and very compact power density..

Application

- Switching AC/DC adapter and battery charger
- ATX standby power
- Open frame switching power and CD(R)
- Set-top-boxes(STB) 384Xreplacement

Features

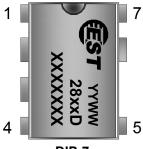
- Integrated high voltage MOSFET
- 65KHz fix frequency mode at PWM Mode
- Very low startup current (<3 uA)
- 0.5mA ultra-low operating current at light load
- Current mode control with Cycle-by-Cycle current limit
- Built-in slope and load regulation compensation
- LEB (Leading-edge blanking) on CS Pin
- UVLO (Under voltage lockout)
- Fault Protections: VDD Over Voltage, CS OVP(Over Voltage), Output Short-Circuit, Over-Current, OLP (Over load protection) and Pin Fault
- Photo coupler short protection & Feedback open protection
- High voltage CMOS process with excellent ESD protection
- 250mA/-500mA driving capability
- Hazardous Substance Free
- RoHs/REACH Compliant

DIP-7I

Function and Protection Options

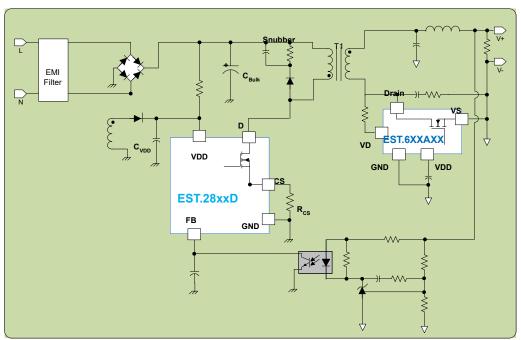
Part	B	Freq.						
No.	Package	KHZ	OLP	VDD. OVP	AUX. OVP CS. OVP		CS. Open	SDSP
EST.28xxD	DIP-7	65KHz	Hiccup / 100mS	Hiccup	Hiccup	Hiccup	Hiccup	Hiccup

Note: EST lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. EST lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. EST defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight)


Ordering Information

Part Number	Package	Packaging	Note
EST.28xxD	DIP-7L	Tape	Green

Pin Assignments and Package Type



EST: LOGO YYWW: Date code 28xxD: xxD=MOS Type; XXXXXXX: Production lot code

DIP-7

DIP-7	NAME Description	Description
1,2	CS	Current Sense pin, connect to sense the MOSFET current.
3	GND	Ground
4	VDD	Power supply pin
5	FB	Voltage input pin by connecting a photo-coupler
6,7	DRAIN	HV MOSFET Drain pin. The Drain pin is connected to the primary lead of the transformer.

Application Circuit

Absolute Maximum Ratings

Doromotor Cumbal		Cymhal	Limit	Values	Linit	Domark
Parameter Symbol		Symbol	Min.	Max	Unit	Remark
Supply Voltage VDD		V_{DD}	-0.3	32	V	
FB,CS Voltage		$V_{AC}, V_{FB}, V_{CS},$	-0.3	7	V	
Drain Voltage		V_D	650		V	
Max Junction Temperature		T _{im}	-40	150	°C	
Operation Junction Temperature		Tj	-40	125	°C	
Operation Ambient Temperature		TA	-25	85	°C	
Storage Temperature		T _{stg}	-55	150	°C	
Absolute Max. IDD Current @ V _{DD} =25V		I _{DD_max}	-	22	mA	
Power Dissipation	Ta = 25℃	PD	-	1500	mW	DID 7
Junction-to-Ambient Thermal Resistance*		θ_{JA}	-	80	°C/W	DIP-7
Junction-to-Case Thermal Resistance**		θ_{JC}	-	20	°C/W	
Lead temperature (Soldering, 10 sec)			-	260	°C	
ESD Voltage Protection	HBM	V _{ESD-HBM}	-	3.0	KV	
ESD Voltage Protection	MM	V _{ESD-MM}	-	300	V	

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliablity.

Recommended Operating Conditions

Parameter Symbol	Symbol	Limit	Values	Unit	Remarks
Parameter Symbol	Symbol	Min.	Max	Ullit	Remarks
Operation Junction Temperature	Tjo	-40	125	°C	
Supply Voltage V _{DD}	V _{DD}	11	25	V	
Startup Resistor Value	R _{star}	1	14	ΜΩ	
Ambient temperature range	T _{opr}	-25	85	°C	
Capacitance of CS pin	C _{CS}	47	390	pF	
Capacitance of FB pin	C _{FB}		2.2	nF	

DC Electrical Characteristics (VCC =15V, Ta=25°C)

Supply Voltage (VDD Pin):

oupply voltage (vob i iii).						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Startup Current	I _{CC-ST}	2	3.5	5.5	μА	UVLO ON - 0.1V
On a ration of Commont	I _{CC-OP}	0.4	0.6	0.8	mA	V _{FB} =0V
Operating Current (with 1nF load on DRV pin)	I _{CC-OP}	1.5	2	2.5	mA	V _{FB} =2.5V CL=1nF
(With the load on DRV pin)	I _{CC-OLP}	0.2	0.35	0.5	mA	OLP
UVLO (off)	V _{UVLO-OFF}	7.5	8.0	8.5	V	
UVLO (on)	V _{UVLO-ON}	16		19	V	
V _{DD} OVP Level	V _{OVP}	26	27	28.5	V	
OVP Debounce Time	T _{OVP}		4		cycle	Guarantee by Design
V _{CC} Simulation mode(ON)	V _{CC-HD_ON}	9.7	10.2	10.7	V	
V _{CC} Simulation mode(Off)	V _{CC-HD_OFF}	10.2	10.7	11.2	V	
Latch off mode release Current	IDD _{-LHOFF}			25	uA	Guarantee by Design

Voltage Feedback(FB Pin):

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Short Circuit Current	I _{Zero}	0.1	0.14	0.18	mA	V _{FB} =0V
Open Loop Voltage	V _{FB-OP}	4.8	5	5.2	V	FB pin open
Over Load Protection	V _{OLP}	3.5	4	4.5	V	
Debounce Time of OLP	T _{OLP}	90	100	110	ms	
Burst mode start voltage(on)	V _{BUR_ON}	0.35	0.45	0.55	V	
Burst Mode Hysterics	V _{BUR_HY}	0.05	0.1	0.15	V	

Green Mode Threshold	F _{th_GR}	35	45	55	KHz	V _{FB} =1.3V

Current Sensing (CS Pin):

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Leading Edge Blanking Time & Propagation Delay to Output	T _{LEB} +T _{PD}	400	500	600	ns	
Maximum CS Off Voltage	V _{CSTH}	0.65	0.7	0.75	V	
OCP source current	I _{OCP}	240	250	260	uA	Min. Duty
CS Over Voltage Protection	V _{CS_OVP}	0.45	0.5	0.55	V	T = T _{off}
OVP Leading Blanking time	T _{OVP_LEB}		2		us	
Internal Slope Compensation	V _{SLP_LP_LEB}		160		mV	
Short Circuit Protection Voltage	V _{SCP}		0.85		V	Guarantee by Design
Debounce Time of V _{SCP}	T _{SCP}		2		cycle	
Short Circuit Detection Time	T _{SCP}		100		us	

Timer Section:

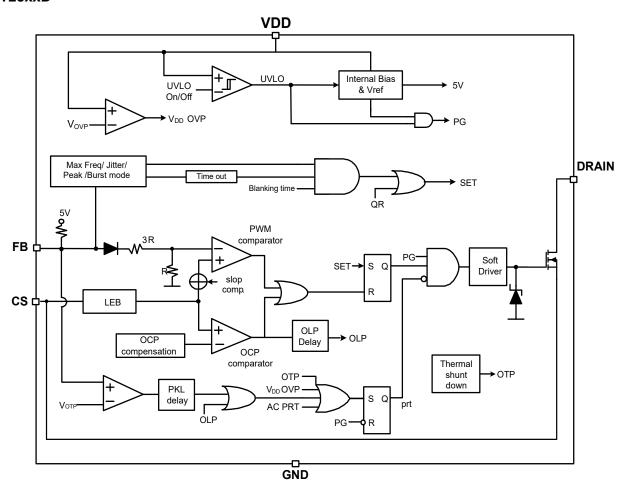
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Burst Mode Frequency	F _{Burst}	22		28	KHz	
PWM Mode Frequency	F _{PWM}	61	65	69	KHz	
Voltage stability of Frequency	F _{PSRR}	-1		+1	%	V _{DD} = 11V~25V
Frequency Shuffling Range	F_jitter	+/-4	+/-6	+/-8	%	
Maximum duty cycle	D _{MAX}	75	80	85	%	
Internal Soft Startup Time	T _{SS}	10.3	13.2	16	mS	

On chip Thermal shut down:

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
IOTP Level	VIOTP		150		°C	Guarantee by Design
Output High Level	Vоотр		120		°C	Caarantee by Boolgin

SDSP (Secondary diodes short protection):

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
SDSP CS pin level	V _{CS_SDSP}		0.85		V	
De-bounce Cycle	T _{D SDSP (*)}		2		Cycle	Guarantee by Design



650V MOSFET (Drain Pin):

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	Remark	Package
MOSFET Drain-source Breakdown Voltage	BV _{DSS}	VGS=0V ID=250uA	650			V		
Static drain-source on-resistance	RDS _(on)	VGS=10V ID=0.4A		14.0	17.0	Ω	EST.2810D	DIP-7
		VGS=10V ID=0.5A		9.0	12.0	Ω	EST.2812D	DIP-7
		VGS=10V ID=1.0A		4.5	5.0	Ω	EST.2816D	DIP-7
		VGS=10V ID=1.5A		3.1	3.9	Ω	EST.2818D	DIP-7
		VGS=10V ID=0.5A		2.4	2.7	Ω	EST.2819D	DIP-7

Block Diagram

EST28xxD

Application Note

Operation Overview

The EST.28xxD meets the green power requirement and very is suitable for the application for those networking adaptors and various consumer power, which can provide more power efficiency and keep lower power loss. It also supports various kind of protection for every abnormal environments.

VDD Start-up and Control

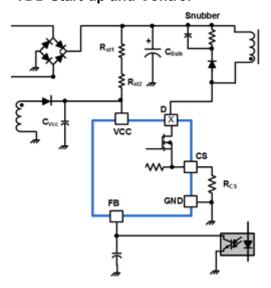
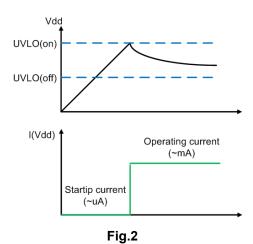



Fig.1

The start-up circuit of EST.28xxD is shown in Fig.1 . The internal comparator of EST.28xxD will detect the voltage on the VDD pin, and assures the supply voltage enough to turn it on. At beginning, the startup current

provides by (R_{st1}/R_{st2}) to charge the capacitor C_{VDD} till VDD gets enough voltage (UVLO_ON) to turn on

itself, please refers to Fig.2. Meantime, it goes a step further to deliver the gate drive signal to enable the Aux. winding of transformer, and then provides supply current. The startup current of EST.28xxD is designed to be very low so that C_{VDD} could be charged up above the threshold of UVLO_on and it starts up quickly.

EST.28xxD series are process with low power mix-mode process (5V and 32V), which max start-up current is below 3uA. R-start calculate as below:

$$\frac{\textit{V}_{\text{bulk}} - \textit{V}_{\text{UVLO_ON}}}{\textit{R}_{\text{start}}} > \textit{Icc-st}$$

It is trade-off between startup time and low start-up consumption with a higher startup resistance. Therefore, carefully selects the value of R_{start} and to optimize the power consumption and startup time.

SS, Soft-start Sequence

EST.28xxD also builds up 13.2/8.6 ms (typical) soft-start to soften the electrical stress occurring in the power supply during startup, refer to Fig.3. As soon as VDD reaches UVLO_on, the Cs peak voltage is gradually increased from 0.2V to the maximum level, see Fig.3.

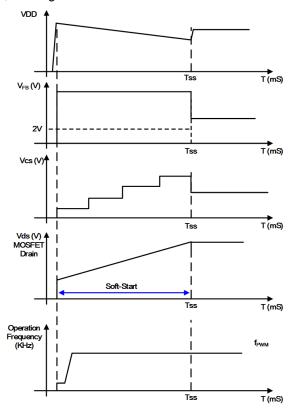
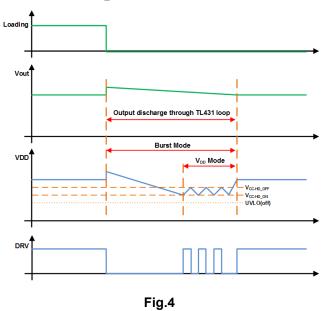


Fig.3

Datasheet


VDD Stimulation Mode

EST.28xxD provides stimulation mode to avoid abnormal re-start-up under the situation of heavy loading to no-load, caused by non-balance of discharge of VDD cap and output cap, which is different with burst mode. The waveform is shown in Fig.4

Condition : $V_{FB} < V_{BUR_ON} \& V_{DD} < 9.5V$ trigger, Hysterics Voltage 1V

Action : IC fix output F_{Burst} , and V_{CS} keeps as 0.15 V

Notice: Design V_AUX higher than 11V

FB, Voltage Feedback Loop

EST.28xxD uses current mode control, that is say, the voltage feedback signal is provided from EST.431 at secondary side through the photo-coupler to FB pin and compare to the current signal sensing from Cs pin at primary side of MOS current to control the on/off of MOSFET.

In order to enhance light load efficiency, the loss of the feedback resistor in parallel with photo-coupler is reduced. Due to small feedback resistor current, shunt regulator selection and minimum regulation current design have to considered more carefully to make sure it's able to regulate under low cathode current.

To make sure the stability of feedback is very important. Unstable feedback signal will introduce output oscillate or audio noise. You can monitor the ripple & Noise of output to adjust the phase and gain

margin of close loop.

- (1). R_{bias1} and R_{bias2} to prevent the abnormal output voltage at heavy loading. Generally, we suggest R_{bias1} 100~1K Ω , R_{bias2} 1.5~2.5K Ω
- (2). R_{phase}/C_{phase} is for RC phase compensation and prevent oscillate to adjust the value of C_{FB}
- (3). Generally, we suggest $R_{phase} = 1{\sim}10 K\Omega$, C_{phase} 0.1uF $\,$, C_{FB} 1~2.2nF
- (3). The ratio of R_3 and R_{3A} is depent on the output voltage spec (EST.431 ,V= 2.5V)

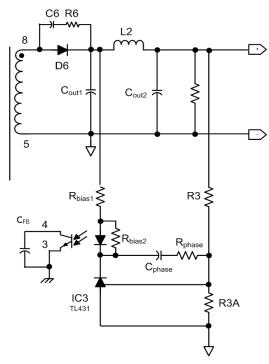


Fig.5

In addition, V_{FB} is also used to determine the green mode level .When V_{FB} is under V_{BUR_ON} , it is under no load or light load condition; at light loading, burst mode can effectively reduces the switching loss. When V_{FB} is larger than V_{BUR_ON} , it will leave away the standby mode. The normal operation of V_{FB} is from V_{BUR_ON} to 2.4V meanwhile, short-circuit current is around I_{Zero} .

CS, Current sense Loop

Current mode PWM control mode detects the current command (CS) from the Rsense (the primary MOSFET current sense resistor) and voltage command from photocoupler (FB) to determine whether the system reaches a stable or not. There is a potential risk of sub-harmonic when the duty of

flyback methodology is larger than 50% and the operation under continues conduction mode (CCM), therefore, EST.28xxD also builds in the slope compensation between high and low AC line to avoid the sub-harmonic risk.

A leading-edge blanking (LEB) time is included in the input of CS pin to prevent the false-trigger from the current spike. Meanwhile, it is strongly recommended to put a suitable R-C filter for higher power application to prevent the CS pin being damaged by the unknow negative spike.

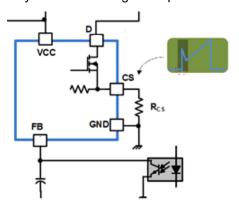


Fig.6

Complete Protection

EST.28xxD integrates various kind of protection to make sure operation safety.

VDD OVP (Over Voltage Protection)

The maximum ratings of the EST.28xxD are around 30V. To prevent the VDD enter breakdown condition, EST.28xxD series are integrated with OVP function on VDD pin. Whenever the VDD voltage is higher than the V_{OVP} threshold, the output gate drive circuit will be turn-off simultaneously and the power MOSFET is turn-off until the next UVLO(on) cycle.

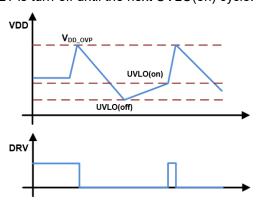
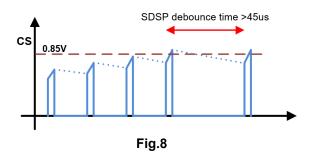
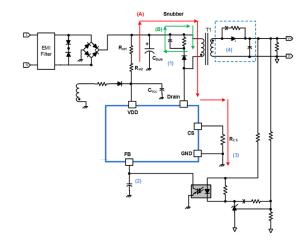



Fig.7

SDSP, Secondary Diode Short Protection

After short circuit of 2nd side schottky, the inductance current is too low to discharge completely caused by lower output voltage, and then it will continues to increasing to induce abnormal saturation of transformer during LEB timing, therefore, higher peak current induce serious high Vds to damage MOSFET.

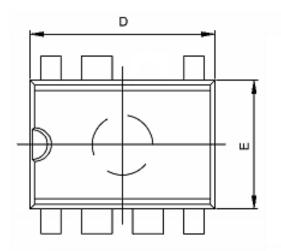

EST.28xxD detects the inductance current through the resistance, Rcs, of CS pin, and will trigger protection (latch or hiccup) when Vcs higher than 0.85V and sustains 2cycle timing.

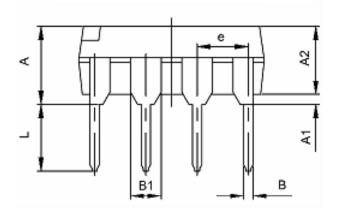
Layout Guide line

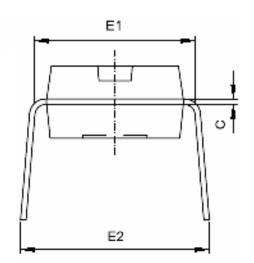
Better layout plan can reduce unknow noise no matter signal or EMI, please refer to the list below:

- Big current path: A&B (Area 1) area are high frequency current loop, line to line is as close as possible, and avoid near low voltage control area
- Low voltage area: R devider need to be as near
 FB Pin as possible.
- Secondary Side Schottky: routing as close as possible
- Grounding: (2) and (3) grounding separated with each other, and end connects to (1) ground.

Table 1: Complete Protection


Issue	Protection		Pin	Protection Conditions
1st	V-Sense	VDD OVP	VDD	VDD > 26V
1st	V-Sense	VDD UVLO Off	VDD	VDD < 7.5V
1st	V-Sense	CS pin open	CS	V _{CS} >0.7V after 4 cycles
2nd	SDSP	2nd side Schottky short	CS	VCS >0.85V after 2 cycles
2nd	SCP	Output short	CS	1. 12ms blank time during start-up 2. after 4 cycles 3.Duty < 10%
2nd	OVP	Output OVP	cs	Vcs compares to 0.5V through the resistance divider
1nd	ОСР	OCP	cs	Hi/Low line OCP external adjust , Max current limit CS=0.7V
2nd	OLP	OLP	FB	CS > 4V
IC	Chip OTP			chip OTP at 150 ℃





Package Information

DIP-7 Package

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	3.710	4.310	0.146	0.170	
A1	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
В	0.360	0.560	0.014	0.022	
B1	1.52	4(TYP)	0.060(TYP)		
С	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.600	0.244	0.260	
E1	7.62	O(TYP)	0.300(TYP)		
e	2.54	0(TYP)	0.100(TYP)		
L	3.000	3.600	0.118	0.142	
E2	8.200	9.400	0.323	0.370	

EST.28xxD Green-Mode PWM Controller (SSR)

© http://www.esthome.com

© 2020 EST Printed in Taiwan - All Rights Reserve